论文标题

边界指导实时舌分段的分层网络

Boundary Guidance Hierarchical Network for Real-Time Tongue Segmentation

论文作者

Zeng, Xinyi, Zhang, Qian, Chen, Jia, Zhang, Guixu, Zhou, Aimin, Wang, Yiqin

论文摘要

舌头图像中的自动舌头图像分割是一项具有挑战性的任务,原因有两个:1)舌头表面上有许多病理细节,会影响边界的提取; 2)从各个人(患有不同疾病)捕获的舌头形状截然不同。为了应对挑战,本文提出了一个新型的端到端边界指导等级网络(BGHNET),并具有新的混合损失。在新方法中,首先是上下文特征编码器模块(CFEM)建立在自下而上的途径上,以面对接收场的收缩。其次,采用新颖的层次复发融合模块(HRFFM)来逐步和分层完善对象图,以通过集成本地上下文信息来恢复图像详细信息。最后,在四个层次像素,贴片,地图和边界中提出的杂种损失指导网络有效分段舌头区域和准确的舌边界。 BGHNET应用于一组舌头图像。实验结果表明,所提出的方法可以实现最新的舌分段性能。同时,轻型网络仅包含1545万参数,仅执行11.22Gflops。

Automated tongue image segmentation in tongue images is a challenging task for two reasons: 1) there are many pathological details on the tongue surface, which affect the extraction of the boundary; 2) the shapes of the tongues captured from various persons (with different diseases) are quite different. To deal with the challenge, a novel end-to-end Boundary Guidance Hierarchical Network (BGHNet) with a new hybrid loss is proposed in this paper. In the new approach, firstly Context Feature Encoder Module (CFEM) is built upon the bottomup pathway to confront with the shrinkage of the receptive field. Secondly, a novel hierarchical recurrent feature fusion module (HRFFM) is adopt to progressively and hierarchically refine object maps to recover image details by integrating local context information. Finally, the proposed hybrid loss in a four hierarchy-pixel, patch, map and boundary guides the network to effectively segment the tongue regions and accurate tongue boundaries. BGHNet is applied to a set of tongue images. The experimental results suggest that the proposed approach can achieve the latest tongue segmentation performance. And in the meantime, the lightweight network contains only 15.45M parameters and performs only 11.22GFLOPS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源