论文标题

NSFNET(Navier-Stokes Flow Nets):不可压缩的Navier-Stokes方程的物理信息神经网络

NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations

论文作者

Jin, Xiaowei, Cai, Shengze, Li, Hui, Karniadakis, George Em

论文摘要

我们采用物理信息神经网络(PINN)来模拟从层流到湍流的不可压缩流。我们通过考虑两种不同的Navier-Stokes方程式来执行PINN模拟:速度压力(VP)公式和涡度 - 速度(VV)公式。我们将这些特定的PINN称为Navier-Stokes流网为NSFNET。分析解决方案和直接数值模拟(DNS)数据库为NSFNET模拟提供了适当的初始和边界条件。空间和时间坐标是NSFNET的输入,而瞬时速度和压力场是VP-NSFNET的输出,而瞬时速度和涡流场是VV-NSFNET的输出。这两种不同形式的Navier-Stokes方程以及初始条件和边界条件嵌入到PINN的损耗函数中。没有提供有关VP-NSFNET的压力的数据,VP-NSFNET是隐藏状态,并且是通过不压缩性约束而无需拆分方程而获得的。在收敛损失函数后,我们获得了NSFNET仿真结果的良好精度,并验证NSFNET可以使用VP或VV公式有效地模拟复杂的不可压缩流。我们还对数据/物理组件的损耗函数中使用的权重进行了系统研究,并研究了一种动态计算权重以加速训练并提高准确性的新方法。我们的结果表明,对于层流和湍流,NSFNET的准确性可以通过在损耗函数中正确调整重量(手动或动态)来提高。

We employ physics-informed neural networks (PINNs) to simulate the incompressible flows ranging from laminar to turbulent flows. We perform PINN simulations by considering two different formulations of the Navier-Stokes equations: the velocity-pressure (VP) formulation and the vorticity-velocity (VV) formulation. We refer to these specific PINNs for the Navier-Stokes flow nets as NSFnets. Analytical solutions and direct numerical simulation (DNS) databases provide proper initial and boundary conditions for the NSFnet simulations. The spatial and temporal coordinates are the inputs of the NSFnets, while the instantaneous velocity and pressure fields are the outputs for the VP-NSFnet, and the instantaneous velocity and vorticity fields are the outputs for the VV-NSFnet. These two different forms of the Navier-Stokes equations together with the initial and boundary conditions are embedded into the loss function of the PINNs. No data is provided for the pressure to the VP-NSFnet, which is a hidden state and is obtained via the incompressibility constraint without splitting the equations. We obtain good accuracy of the NSFnet simulation results upon convergence of the loss function, verifying that NSFnets can effectively simulate complex incompressible flows using either the VP or the VV formulations. We also perform a systematic study on the weights used in the loss function for the data/physics components and investigate a new way of computing the weights dynamically to accelerate training and enhance accuracy. Our results suggest that the accuracy of NSFnets, for both laminar and turbulent flows, can be improved with proper tuning of weights (manual or dynamic) in the loss function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源