论文标题

Graphnet Zoo:基于多合一图的深度半监督框架,用于医学图像分类

The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification

论文作者

de Vriendt, Marianne, Sellars, Philip, Aviles-Rivero, Angelica I

论文摘要

当我们的标签数量有限时,我们考虑对医疗图像数据集进行分类的问题。这是非常普遍但充满挑战的环境,因为标记的数据很昂贵,收集时间耗时,并且可能需要专家知识。当前的深入监督学习的分类无法应对此类问题的设置。但是,使用半监督学习,可以使用标记的数据大量减少的数据来产生准确的分类。因此,半监督学习非常适合医学图像分类。但是,医疗领域几乎没有半监督方法的吸收。在这项工作中,我们为深度半监督分类提供了一个多合一的框架,重点是基于图形的方法,据我们所知,这是第一次证明具有最小标签的方法对具有医疗数据的前所未有的规模显示出来。我们通过将分类器定义为基于能量的模型和深网之间的组合来介绍混合模型的概念。我们的能量功能是基于基于图形 - 拉普拉斯的Dirichlet Energy构建的。我们的框架包括基于$ \ ell_1 $和$ \ ell_2 $规范的能量。然后,我们将此能量模型连接到一个深网,以生成更丰富的特征空间来构建更强的图形。我们的框架可以设置为适应任何复杂的数据集。通过广泛的数值比较,我们证明了我们的方法很容易竞争完全监督的最新技术,用于疟疾细胞,乳房X线照片和胸部X射线分类的应用,而仅使用20%的标签。

We consider the problem of classifying a medical image dataset when we have a limited amounts of labels. This is very common yet challenging setting as labelled data is expensive, time consuming to collect and may require expert knowledge. The current classification go-to of deep supervised learning is unable to cope with such a problem setup. However, using semi-supervised learning, one can produce accurate classifications using a significantly reduced amount of labelled data. Therefore, semi-supervised learning is perfectly suited for medical image classification. However, there has almost been no uptake of semi-supervised methods in the medical domain. In this work, we propose an all-in-one framework for deep semi-supervised classification focusing on graph based approaches, which up to our knowledge it is the first time that an approach with minimal labels has been shown to such an unprecedented scale with medical data. We introduce the concept of hybrid models by defining a classifier as a combination between an energy-based model and a deep net. Our energy functional is built on the Dirichlet energy based on the graph p-Laplacian. Our framework includes energies based on the $\ell_1$ and $\ell_2$ norms. We then connected this energy model to a deep net to generate a much richer feature space to construct a stronger graph. Our framework can be set to be adapted to any complex dataset. We demonstrate, through extensive numerical comparisons, that our approach readily compete with fully-supervised state-of-the-art techniques for the applications of Malaria Cells, Mammograms and Chest X-ray classification whilst using only 20% of labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源