论文标题
2类理论的可访问方面
Accessible aspects of 2-category theory
论文作者
论文摘要
分类结构及其伪群很少在富含猫的类别理论的意义上形成本地可观的2类。但是,我们表明,如果所讨论的分类结构足够弱(例如单体结构,但不是严格的单体类别),则可以访问所讨论的两类。此外,我们探讨了这种两类具有的柔性极限及其与过滤的colimits的相互作用。
Categorical structures and their pseudomaps rarely form locally presentable 2-categories in the sense of Cat-enriched category theory. However, we show that if the categorical structure in question is sufficiently weak (such as the structure of monoidal, but not strict monoidal, categories) then the 2-category in question is accessible. Furthermore, we explore the flexible limits that such 2-categories possess and their interaction with filtered colimits.