论文标题

2类理论的可访问方面

Accessible aspects of 2-category theory

论文作者

Bourke, John

论文摘要

分类结构及其伪群很少在富含猫的类别理论的意义上形成本地可观的2类。但是,我们表明,如果所讨论的分类结构足够弱(例如单体结构,但不是严格的单体类别),则可以访问所讨论的两类。此外,我们探讨了这种两类具有的柔性极限及其与过滤的colimits的相互作用。

Categorical structures and their pseudomaps rarely form locally presentable 2-categories in the sense of Cat-enriched category theory. However, we show that if the categorical structure in question is sufficiently weak (such as the structure of monoidal, but not strict monoidal, categories) then the 2-category in question is accessible. Furthermore, we explore the flexible limits that such 2-categories possess and their interaction with filtered colimits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源