论文标题

buildsensys:通过跨域学习重复使用构建传感数据进行流量预测

BuildSenSys: Reusing Building Sensing Data for Traffic Prediction with Cross-domain Learning

论文作者

Fan, Xiaochen, Xiang, Chaocan, Chen, Chao, Yang, Panlong, Gong, Liangyi, Song, Xudong, Nanda, Priyadarsi, He, Xiangjian

论文摘要

随着智能城市的快速发展,智能建筑正在通过配备的传感器产生大量的建筑传感数据。实际上,建筑传感数据提供了一种充实一系列数据需求和成本高昂的城市移动应用程序的有希望的方法。在本文中,我们研究了如何重复使用建筑传感数据以预测附近道路上的交通量。然而,对此类跨域数据进行准确的预测和两个主要挑战是无关紧要的。首先,构建传感数据和流量数据之间的关系并不是先验,而时空的复杂性则更加困难地发现上述关系背后的根本原因。其次,通过动态建筑交通相关性准确预测流量,这是更令人生畏的,这些相关性是跨域,非线性和时间变化的。为了应对上述挑战,我们设计和实施buildsensys,这是一个通过重复建筑传感数据来实现附近交通量预测的首个系统。首先,我们基于多源数据集进行了全面的建筑交通分析,披露了如何以及为什么建筑传感数据与附近的交通量相关。其次,我们提出了一种基于跨域学习的新型复发性神经网络,用于使用两种注意机制进行交通量预测。具体而言,跨域注意机制捕获了建筑物交通相关性,并在每个预测步骤中自适应提取最相关的建筑传感数据。然后,采用时间注意机制来对数据的时间依赖性进行建模。广泛的实验研究表明,在预测附近的交通量时,Buildsensys的表现优于所有基线方法,其精度提高了65.3%(例如MAPE)。

With the rapid development of smart cities, smart buildings are generating a massive amount of building sensing data by the equipped sensors. Indeed, building sensing data provides a promising way to enrich a series of data-demanding and cost-expensive urban mobile applications. In this paper, we study how to reuse building sensing data to predict traffic volume on nearby roads. Nevertheless, it is non-trivial to achieve accurate prediction on such cross-domain data with two major challenges. First, relationships between building sensing data and traffic data are not unknown as prior, and the spatio-temporal complexities impose more difficulties to uncover the underlying reasons behind the above relationships. Second, it is even more daunting to accurately predict traffic volume with dynamic building-traffic correlations, which are cross-domain, non-linear, and time-varying. To address the above challenges, we design and implement BuildSenSys, a first-of-its-kind system for nearby traffic volume prediction by reusing building sensing data. First, we conduct a comprehensive building-traffic analysis based on multi-source datasets, disclosing how and why building sensing data is correlated with nearby traffic volume. Second, we propose a novel recurrent neural network for traffic volume prediction based on cross-domain learning with two attention mechanisms. Specifically, a cross-domain attention mechanism captures the building-traffic correlations and adaptively extracts the most relevant building sensing data at each predicting step. Then, a temporal attention mechanism is employed to model the temporal dependencies of data across historical time intervals. The extensive experimental studies demonstrate that BuildSenSys outperforms all baseline methods with up to 65.3% accuracy improvement (e.g., 2.2% MAPE) in predicting nearby traffic volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源