论文标题
协调可转移性和适应对象检测器的可区分性
Harmonizing Transferability and Discriminability for Adapting Object Detectors
论文作者
论文摘要
自适应对象检测的最新进展已通过对抗特征适应性来减轻沿检测管道的分布转移,从而取得了令人信服的结果。尽管对抗性适应显着提高了特征表示的可传递性,但对象检测器的特征可区分性仍然较少。此外,鉴于对象的复杂组合和域之间的差异化场景布局,可传递性和可区分性可能在对抗适应中存在矛盾。在本文中,我们提出了一个层次可传递性校准网络(HTCN),该网络在层次上(本地区域/图像/实例)校准了特征表示的可传递性,以协调可传递性和可区分性。所提出的模型由三个组成部分组成:(1)具有输入插值(IWAT-I)的重要性加权对抗训练,通过重新投资插值图像级特征来增强全局可区分性; (2)上下文感知实例级别对齐(CILA)模块,该模块通过捕获实例级属性功能与实例级特征对齐的全局上下文信息之间的基本互补效果来增强局部可区分性; (3)局部特征掩盖校准局部传递性,以提供以下歧视模式比对的语义指导。实验结果表明,HTCN明显优于基准数据集上的最新方法。
Recent advances in adaptive object detection have achieved compelling results in virtue of adversarial feature adaptation to mitigate the distributional shifts along the detection pipeline. Whilst adversarial adaptation significantly enhances the transferability of feature representations, the feature discriminability of object detectors remains less investigated. Moreover, transferability and discriminability may come at a contradiction in adversarial adaptation given the complex combinations of objects and the differentiated scene layouts between domains. In this paper, we propose a Hierarchical Transferability Calibration Network (HTCN) that hierarchically (local-region/image/instance) calibrates the transferability of feature representations for harmonizing transferability and discriminability. The proposed model consists of three components: (1) Importance Weighted Adversarial Training with input Interpolation (IWAT-I), which strengthens the global discriminability by re-weighting the interpolated image-level features; (2) Context-aware Instance-Level Alignment (CILA) module, which enhances the local discriminability by capturing the underlying complementary effect between the instance-level feature and the global context information for the instance-level feature alignment; (3) local feature masks that calibrate the local transferability to provide semantic guidance for the following discriminative pattern alignment. Experimental results show that HTCN significantly outperforms the state-of-the-art methods on benchmark datasets.