论文标题
线性无限二维系统的积分二次约束,用于稳健稳定性分析
Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis
论文作者
论文摘要
本文提出了一个框架,以评估与1D-派对微分方程(PDE)耦合的普通微分方程的稳定性。稳定性定理基于对整体二次约束(IQC)的新结果,并用两个线性矩阵不等式表示,具有中等的计算负担。 IQC不是使用涉及整个无限二维系统状态的耗散不等式产生的,而是使用无限维状态的投影系数。这允许将我们的鲁棒性结果推广到许多其他PDE。所提出的方法应用于时间延迟系统,并获得了与文献相当的数值结果。
This paper proposes a framework to assess the stability of an ordinary differential equation which is coupled to a 1D-partial differential equation (PDE). The stability theorem is based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two linear matrix inequalities with a moderate computational burden. The IQCs are not generated using dissipation inequalities involving the whole state of an infinite-dimensional system, but by using projection coefficients of the infinite-dimensional state. This permits to generalize our robustness result to many other PDEs. The proposed methodology is applied to a time-delay system and numerical results comparable to those in the literature are obtained.