论文标题

在粘合Alexandrov空间,RICCI曲率范围较低

On gluing Alexandrov spaces with lower Ricci curvature bounds

论文作者

Kapovitch, Vitali, Ketterer, Christian, Sturm, Karl-Theodor

论文摘要

在本文中,我们证明,在riemannian曲率曲率差异条件下方的公制测量空间中,带有$ k \ in \ mathbb {r} $和$ n \ in [1,\ infty)$的$ k \ in \ mathbb {r} $和$ n \ in [1,\ infty)的$ bulcd和$ n \的$ k \ in [1,\ infty)$ buldoble and doubl and toubl and toubl and toubl and toubl and toubl and toubl and toubl and toubl and toubl and toubl and toubl and blous。

In this paper we prove that in the class of metric measure spaces with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD(K,N)$ with $K\in \mathbb{R}$ and $N\in [1,\infty)$ is preserved under doubling and gluing constructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源