论文标题
汉密尔顿 - 雅各比对田野的超声处理和量化的处理
Hamilton-Jacobi Treatment of Superstring and Quantization of Fields with Constraints
论文作者
论文摘要
受约束系统的汉密尔顿 - 雅各比形式主义用于研究超声词。在许多变量中,获得了单数系统作为总微分方程的运动方程。这些运动方程与使用Dirac方法获得的方程式完全一致。此外,讨论了约束系统的汉密尔顿 - 雅各比量化。研究了相对论局部自由场的量化二级约束的尺寸D的线性速度。通过使用规范路径积分量化,获得了汉密尔顿 - 雅各比部分偏微分方程和这些理论的路径积分的集合。我们发现,该系统的汉密尔顿 - 雅各比路径积分量化与使用Senjanovic方法给出的完全一致。此外,汉密尔顿 - 雅各比(Hamilton-Jacobi)路径的积分量化的标量场与通过Yukawa耦合的两个口味相连的标量场的量化直接作为在规范相空间上的积分直接获得。汉密尔顿 - 雅各比(Hamilton-Jacobi)量化通过在不使用任何量规固定条件的情况下研究整合性条件,将有限自由度的约束场系统应用于约束场系统。
The Hamilton-Jacobi formalism of constrained systems is used to study superstring. That obtained the equations of motion for a singular system as total differential equations in many variables. These equations of motion are in exact agreement with those equations obtained using Dirac's method. Moreover, the Hamilton-Jacobi quantization of a constrained system is discussed. Quantization of the relativistic local free field with a linear velocity of dimension D containing second-class constraints is studied. The set of Hamilton-Jacobi partial differential equations and the path integral of these theories are obtained by using the canonical path integral quantization. We figured out that the Hamilton-Jacobi path integral quantization of this system is in exact agreement with that given by using Senjanovic method. Furthermore, Hamilton-Jacobi path integral quantization of the scalar field coupled to two flavours of fermions through Yukawa couplings is obtained directly as an integration over the canonical phase space. Hamilton-Jacobi quantization is applied to the constraint field systems with finite degrees of freedom by investigating the integrability conditions without using any gauge fixing condition.