论文标题
强烈拓扑陀螺仪的下化性
Submetrizability of strongly topological gyrogroups
论文作者
论文摘要
最近已经研究了具有较弱的代数结构的拓扑陀螺群,最近已经研究了。我们证明每个$ t_ {0} $ - 强烈的拓扑gyrogroup是完全规则的。我们还证明,每个$ t_ {0} $ - 具有可计数伪character的强烈拓扑gyrogroup都是可分离的。最后,我们证明,如果$ h $是$ t_ {0} $的可允许的$ l $ -subgyRogroup,则左coset空间$ g/h $是可分离的。
Topological gyrogroups, with a weaker algebraic structure without associative law, have been investigated recently. We prove that each $T_{0}$-strongly topological gyrogroup is completely regular. We also prove that every $T_{0}$-strongly topological gyrogroup with a countable pseudocharacter is submetrizable. Finally, we prove that the left coset space $G/H$ is submetrizable if $H$ is an admissible $L$-subgyrogroup of a $T_{0}$-strongly topological gyrogroup $G$.