论文标题
高度敏感的可调约瑟夫森逃生传感器,用于Gigahertz天文学
Hypersensitive tunable Josephson escape sensor for gigahertz astronomy
论文作者
论文摘要
Gigahertz带中的敏感光子检测构成了研究天文学中不同现象的基石,例如无线电爆发来源,星系形成,宇宙微波背景,轴,轴,彗星,Gigahertz峰光谱无线电源和超级大规模黑洞。如今,天体物理学的最先进的检测器主要基于过渡边缘传感器和动力电感探测器。总体而言,到目前为止,大多数明智的纳米体计是超导检测器显示噪声等效功率(NEP)低至2x10-20 w/hz1/2。然而,通过切换电流测量值,在约瑟夫森连接处也证明了纳米级的快速温度计。通常,检测性能是通过制造过程来设定的,而被用过的材料限制。在这里,我们基于完全超导一维纳米线约瑟夫森交界处的温度依赖性的精确控制,并构思并展示了一种创新的可调约瑟夫森逃生传感器(JES)。 JES可能是未来在Gigahertz制度中工作的未来过度敏感的凸电计或单光子检测器的核心。 JES用作验仪,指向热波动噪声(TFN)NEP_TFN 1X10-25 W/HZ1/2,作为量热计的频率分辨率高于2 GHz,并在50 GHz的40 GHz上解析了40 GHz的功率,从而从实验数据中推出。除了对Gigahertz天文学的先进地面和太空望远镜中的明显应用外,JES可能代表了从Subthz通信和量子计算到加密量学和量子密钥分布等多个量子技术领域的突破。
Sensitive photon detection in the gigahertz band constitutes the cornerstone to study different phenomena in astronomy, such as radio burst sources, galaxy formation, cosmic microwave background, axions, comets, gigahertz-peaked spectrum radio sources and supermassive black holes. Nowadays, state of the art detectors for astrophysics are mainly based on transition edge sensors and kinetic inductance detectors. Overall, most sensible nanobolometers so far are superconducting detectors showing a noise equivalent power (NEP) as low as 2x10-20 W/Hz1/2. Yet, fast thermometry at the nanoscale was demonstrated as well with Josephson junctions through switching current measurements. In general, detection performance are set by the fabrication process and limited by used materials. Here, we conceive and demonstrate an innovative tunable Josephson escape sensor (JES) based on the precise current control of the temperature dependence of a fully superconducting one-dimensional nanowire Josephson junction. The JES might be at the core of future hypersensitive in situ-tunable bolometers or single-photon detectors working in the gigahertz regime. Operated as a bolometer the JES points to a thermal fluctuation noise (TFN) NEP_TFN 1x10-25 W/Hz1/2, which as a calorimeter bounds the frequency resolution above 2 GHz, and resolving power below 40 at 50 GHz, as deduced from the experimental data. Beyond the obvious applications in advanced ground-based and space telescopes for gigahertz astronomy, the JES might represent a breakthrough in several fields of quantum technologies ranging from subTHz communications and quantum computing to cryptography and quantum key distribution.