论文标题
逃避蚕食?单位点购买者的相关定价
Escaping Cannibalization? Correlation-Robust Pricing for a Unit-Demand Buyer
论文作者
论文摘要
我们考虑了收入最大化问题的强大版本,其中一个卖家希望将$ n $物品出售给单个单位按需买家。在此强大的版本中,卖方分别知道每个项目的买方的边际价值分布,而不是共同分布,并且在所有兼容的相关结构中,在最坏情况下最大化收入的项目。我们设计了一种计算有效的(在边际支持大小的多项式)算法,该算法计算任何选择物品价格的最差关节分布。然而,与添加剂买家案形成鲜明对比(Carroll,2017年),我们表明,将最佳的价格选择到任何因素之内的最佳选择是NP-HARD,远比$ N^{1/2-ε} $。对于满足单调危险率属性的边际分布的特殊情况,我们展示了如何使用物品定价保证最佳最差收入的持续部分;该定价等同于所有可能的相关性的收入,并且可以有效地计算。
We consider a robust version of the revenue maximization problem, where a single seller wishes to sell $n$ items to a single unit-demand buyer. In this robust version, the seller knows the buyer's marginal value distribution for each item separately, but not the joint distribution, and prices the items to maximize revenue in the worst case over all compatible correlation structures. We devise a computationally efficient (polynomial in the support size of the marginals) algorithm that computes the worst-case joint distribution for any choice of item prices. And yet, in sharp contrast to the additive buyer case (Carroll, 2017), we show that it is NP-hard to approximate the optimal choice of prices to within any factor better than $n^{1/2-ε}$. For the special case of marginal distributions that satisfy the monotone hazard rate property, we show how to guarantee a constant fraction of the optimal worst-case revenue using item pricing; this pricing equates revenue across all possible correlations and can be computed efficiently.