论文标题
较新的大学数据集:手持式LIDAR,惯性和远见与地面真相
The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
论文作者
论文摘要
在本文中,我们介绍了一个大型数据集,其中包含各种移动映射传感器,该数据集使用以典型的步行速度携带的手持设备收集了近2.2公里,该设备在牛津大学的新学院近2.2公里。该数据集包括来自两个市售设备的数据 - 立体惯用摄像头和一个多光束3D激光镜头,该镜头还提供惯性测量。此外,我们使用了三脚架安装的调查级LIDAR扫描仪来捕获测试位置的详细毫米准确的3D地图(包含$ \ sim $ \ sim $ 2.9亿美元)。使用地图,我们推断了每次雷达扫描的设备位置的6度自由度(DOF)地面真理,以更好地评估LIDAR和视觉定位,映射和重建系统。这个基础真理是该数据集的特殊新颖贡献,我们认为它将实现许多类似数据集缺乏的系统评估。数据集结合了建筑环境,开放空间和植被区域,以测试本地化和映射系统,例如基于视觉的导航,视觉和激光雷达大满贯,3D激光雷达重建以及基于外观的位置识别。该数据集可在以下网址找到:ori.ox.ac.uk/datasets/newer-college-dataset
In this paper we present a large dataset with a variety of mobile mapping sensors collected using a handheld device carried at typical walking speeds for nearly 2.2 km through New College, Oxford. The dataset includes data from two commercially available devices - a stereoscopic-inertial camera and a multi-beam 3D LiDAR, which also provides inertial measurements. Additionally, we used a tripod-mounted survey grade LiDAR scanner to capture a detailed millimeter-accurate 3D map of the test location (containing $\sim$290 million points). Using the map we inferred centimeter-accurate 6 Degree of Freedom (DoF) ground truth for the position of the device for each LiDAR scan to enable better evaluation of LiDAR and vision localisation, mapping and reconstruction systems. This ground truth is the particular novel contribution of this dataset and we believe that it will enable systematic evaluation which many similar datasets have lacked. The dataset combines both built environments, open spaces and vegetated areas so as to test localization and mapping systems such as vision-based navigation, visual and LiDAR SLAM, 3D LIDAR reconstruction and appearance-based place recognition. The dataset is available at: ori.ox.ac.uk/datasets/newer-college-dataset