论文标题

具有100K参数的高效显着对象检测

Highly Efficient Salient Object Detection with 100K Parameters

论文作者

Gao, Shang-Hua, Tan, Yong-Qiang, Cheng, Ming-Ming, Lu, Chengze, Chen, Yunpeng, Yan, Shuicheng

论文摘要

显着对象检测模型通常需要相当多的计算成本,以对每个像素进行精确的预测,从而使其几乎不适用于低功率设备。在本文中,我们旨在通过更高程度提高网络效率来减轻计算成本和模型性能之间的矛盾。我们提出了一个灵活的卷积模块,即概括OCTCONV(GOCTCONV),以有效地利用阶段和跨阶段的多尺度特征,同时通过新型的动态重量衰减方案降低了表示的延长。有效的动态重量衰减方案稳定地提高了训练过程中参数的稀疏性,支持GOCTCONV中每个量表的可学习数量的通道数,允许80%的参数随着可忽略的性能下降而减少。利用GOCTCONV,我们构建了一个极轻的模型,即CSNET,该模型在流行的显着对象检测基准测试基准上以大约0.2%的参数(100K)的大型参数(100K)实现可比性。

Salient object detection models often demand a considerable amount of computation cost to make precise prediction for each pixel, making them hardly applicable on low-power devices. In this paper, we aim to relieve the contradiction between computation cost and model performance by improving the network efficiency to a higher degree. We propose a flexible convolutional module, namely generalized OctConv (gOctConv), to efficiently utilize both in-stage and cross-stages multi-scale features, while reducing the representation redundancy by a novel dynamic weight decay scheme. The effective dynamic weight decay scheme stably boosts the sparsity of parameters during training, supports learnable number of channels for each scale in gOctConv, allowing 80% of parameters reduce with negligible performance drop. Utilizing gOctConv, we build an extremely light-weighted model, namely CSNet, which achieves comparable performance with about 0.2% parameters (100k) of large models on popular salient object detection benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源