论文标题

多项式Rota-Baxter代数和基质方程的模块

Modules of polynomial Rota-Baxter Algebras and matrix equations

论文作者

Tang, Xiaomin

论文摘要

多项式代数$ r = {\ bf k} [x] $上的所有rota-baxter代数结构是众所周知的。我们研究了多项式旋转式代数$(\ bfk [x],p)$或$(x {x {\ bf k} [x],p)$ nonzero的有限尺寸模块,因为某些重量零病例的重量为零。主要结果表明,多项式rota-baxter代数$(\ bfk [x],p),p)$或$(x {x {\ bf k} [x],p)$等于平面上的模块$ {\ bf k} k} \ langle x,y \ rangle $。此外,我们通过求解某些矩阵方程的求解,提供重量非零的多项式旋转式代数的模块的分类。

The all Rota-Baxter algebra structures on the polynomial algebra $R={\bf k}[x]$ are well known. We study the finite dimensional modules of polynomial Rota-Baxter algebras $(\bfk[x],P)$ or $(x {\bf k} [x],P)$ of weight nonzero since some cases of weight zero have been studied. The main result shows that every module over the polynomial Rota-Baxter algebra $(\bfk[x],P)$ or $(x {\bf k} [x],P)$ is equivalent to the modules over a plane ${\bf k}\langle x,y \rangle/ I$ where $I$ is some ideal of free algebra ${\bf k}\langle x,y \rangle$. Furthermore, we provide the classification of modules of polynomial Rota-Baxter algebras of weight nonzero through solution to some matrix equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源