论文标题

运动诱导的屈曲和玻璃动力学调节细菌单层的三维过渡

Motility-induced buckling and glassy dynamics regulate three-dimensional transitions of bacterial monolayers

论文作者

Takatori, Sho C., Mandadapu, Kranthi K.

论文摘要

许多成熟的细菌菌落和生物膜是复杂的三维(3D)结构。他们的发展计划的一个关键步骤是从二维(2D)单层转变为3D体系结构。尽管在各种医学和工业环境中控制微生物菌落和生物膜的生长很重要,但单细胞动力学,密集包装细胞的集体行为以及3D复杂菌落扩展的基本物理机制仍然在很大程度上尚不清楚。在这项工作中,我们探讨了铜绿假单胞菌菌落2d至3d转变背后的机制;我们为其平面外增长提供了一种新的运动性诱导的,依赖速率的屈曲机制。我们发现,流动细菌菌落的蜂群会产生持续的面内流动。我们表明,由这些流动产生的粘性剪切应力和动态压力使细胞能够克服细胞覆盖的粘附,从而导致细菌单层的屈曲并生长到第三维。将细菌单层建模为2D流体膜,我们确定了普遍的关系,以阐明面内粘应力,压力和细胞基底粘附之间的竞争。此外,我们表明细菌单层可以表现出从蜂群到动力学的玻璃状状状态在发作密度以上的玻璃状状态,从而产生独特的2d到3d过渡机制。在单细胞分辨率,活性系统的分子动力学模拟以及玻璃动力学和2D流体膜的理论中,在单细胞分辨率上结合了铜绿假单胞菌菌落的实验观察结果,我们开发了一个动力学状态图,以预测菌落状态以及控制其2到3D过渡的机制。

Many mature bacterial colonies and biofilms are complex three-dimensional (3D) structures. One key step in their developmental program is a transition from a two-dimensional (2D) monolayer into a 3D architecture. Despite the importance of controlling the growth of microbial colonies and biofilms in a variety of medical and industrial settings, the underlying physical mechanisms behind single-cell dynamics, collective behaviors of densely-packed cells, and 3D complex colony expansion remain largely unknown. In this work, we explore the mechanisms behind the 2D-to-3D transition of motile Pseudomonas aeruginosa colonies; we provide a new motility-induced, rate-dependent buckling mechanism for their out-of-plane growth. We find that swarming of motile bacterial colonies generate sustained in-plane flows. We show that the viscous shear stresses and dynamic pressures arising from these flows allow cells to overcome cell-substrate adhesion, leading to buckling of bacterial monolayers and growth into the third dimension. Modeling bacterial monolayers as 2D fluid films, we identify universal relationships that elucidate the competition between in-plane viscous stresses, pressure and cell-substrate adhesion. Furthermore, we show that bacterial monolayers can exhibit crossover from swarming to kinetically-arrested, glassy-like states above an onset density, resulting in distinct 2D-to-3D transition mechanisms. Combining experimental observations of P. aeruginosa colonies at single-cell resolution, molecular dynamics simulations of active systems, and theories of glassy dynamics and 2D fluid films, we develop a dynamical state diagram that predicts the state of the colony, and the mechanisms governing their 2D-to-3D transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源