论文标题

瓦斯恒星指标的后渐近线在真实线上

Posterior asymptotics in Wasserstein metrics on the real line

论文作者

Chae, Minwoo, De Blasi, Pierpaolo, Walker, Stephen G.

论文摘要

在本文中,我们使用Wasserstein指标类来研究后验分布的渐近性质。我们的第一个目标是提供足够的后验一致性。除了众所周知的Schwartz的kullback-先验条件之外,需要在先验支持的真实分布和最大概率度量中,还必须将矩具有最高的矩,该矩由Wasestein Metric的顺序确定的顺序。我们进一步研究了需要更强的力矩条件的后验分布的收敛速率。所需的尾部条件是急剧的,因为没有这些条件,后验分布可能不一致或与真实分布缓慢收缩。我们的研究涉及基于对瓦斯汀融合经验措施的最新进展的技术。我们将结果应用于密度估计,并通过Dirichlet工艺混合物事先进行,并进行了模拟研究以进行进一步说明。

In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartz's Kullback--Leibler condition on the prior, the true distribution and most probability measures in the support of the prior are required to possess moments up to an order which is determined by the order of the Wasserstein metric. We further investigate convergence rates of the posterior distributions for which we need stronger moment conditions. The required tail conditions are sharp in the sense that the posterior distribution may be inconsistent or contract slowly to the true distribution without these conditions. Our study involves techniques that build on recent advances on Wasserstein convergence of empirical measures. We apply the results to density estimation with a Dirichlet process mixture prior and conduct a simulation study for further illustration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源