论文标题

多项式环上的Markoff方程

The Markoff equation over polynomial rings

论文作者

Conceição, Ricardo, Kelly, Rachael, VanFossen, Samuel

论文摘要

当$ a = 3 $时,所谓的Markoff方程的积极积分解决方案$$ m_a:x^2 + y^2 + z^2 = axyz $$ 可以通过超出表面的某些自动形态的作用从单个解决方案$(1,1,1)$生成。自从Markoff证明了这一事实的证明以来,几位作者表明,$ M_A(R)$的结构是$ R $是$ \ Mathbf {Z} [I] $或数字字段中某些订单的结构,以类似的方式行事。此外,对于$ r = \ mathbf {z} $和$ r = \ mathbf {z} [i] $,Zagier和Silverman,已经找到了有界高度积分点的渐近公式。在本文中,当$ r $是一个奇数特征的字段$ k $上的多项式戒指时,我们研究了这些问题。我们以与Markoff和以前的作者相似的方式来表征集合$ m_a(k [t])$。我们还提供了类似于Zagier和Silverman的公式的渐近公式。

When $A=3$, the positive integral solutions of the so-called Markoff equation $$M_A:x^2 + y^2 + z^2 = Axyz$$ can be generated from the single solution $(1,1,1)$ by the action of certain automorphisms of the hypersurface. Since Markoff's proof of this fact, several authors have showed that the structure of $M_A(R)$, when $R$ is $\mathbf{Z}[i]$ or certain orders in number fields, behave in a similar fashion. Moreover, for $R=\mathbf{Z}$ and $R=\mathbf{Z}[i]$, Zagier and Silverman, respectively, have found asymptotic formulae for the number of integral points of bounded height. In this paper, we investigate these problems when $R$ is a polynomial ring over a field $K$ of odd characteristic. We characterize the set $M_A(K[t])$ in a similar fashion as Markoff and previous authors. We also give an asymptotic formula that is similar to Zagier's and Silverman's formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源