论文标题

动态张量推荐系统

Dynamic Tensor Recommender Systems

论文作者

Zhang, Yanqing, Bi, Xuan, Tang, Niansheng, Qu, Annie

论文摘要

推荐系统已被娱乐行业,商业营销和生物医学行业广泛使用。除了提供基于偏好的建议作为无监督的学习方法的能力外,它还被证明在销售预测,产品介绍和其他与生产有关的业务方面有用。由于一些消费者和公司需要对未来预算,劳动链协调的建议或预测,因此,用于精确预测的动态推荐系统变得非常必要。在本文中,我们提出了一种新的建议方法,即动态张量推荐系统(DTRS),该方法尤其旨在预测未来的建议。所提出的方法利用时间的张量值函数来整合时间和上下文信息,并通过多项式晶状体近似值创建时间变化的时间张系数。该提出的方法的主要优势包括竞争性的未来建议预测和有效的预测间隔估计。从理论上讲,我们建立了拟议的张量分解和样条系数估计量的渐近态性的收敛速率。提出的方法应用于模拟和IRI营销数据。数值研究表明,所提出的方法在未来的时间预测方面优于现有方法。

Recommender systems have been extensively used by the entertainment industry, business marketing and the biomedical industry. In addition to its capacity of providing preference-based recommendations as an unsupervised learning methodology, it has been also proven useful in sales forecasting, product introduction and other production related businesses. Since some consumers and companies need a recommendation or prediction for future budget, labor and supply chain coordination, dynamic recommender systems for precise forecasting have become extremely necessary. In this article, we propose a new recommendation method, namely the dynamic tensor recommender system (DTRS), which aims particularly at forecasting future recommendation. The proposed method utilizes a tensor-valued function of time to integrate time and contextual information, and creates a time-varying coefficient model for temporal tensor factorization through a polynomial spline approximation. Major advantages of the proposed method include competitive future recommendation predictions and effective prediction interval estimations. In theory, we establish the convergence rate of the proposed tensor factorization and asymptotic normality of the spline coefficient estimator. The proposed method is applied to simulations and IRI marketing data. Numerical studies demonstrate that the proposed method outperforms existing methods in terms of future time forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源