论文标题

通过神经程序综合学习构图规则

Learning Compositional Rules via Neural Program Synthesis

论文作者

Nye, Maxwell I., Solar-Lezama, Armando, Tenenbaum, Joshua B., Lake, Brenden M.

论文摘要

人类推理的许多方面,包括语言,都需要从很少的数据中学习规则。人类可以做到这一点,经常从很少的示例中学习系统的规则,并将这些规则结合起来形成基于组成规则的系统。另一方面,当前的神经体系结构通常无法以组成方式概括,尤其是当以训练系统上的方式进行评估时。在这项工作中,我们提出了一个神经符号模型,该模型从一小部分示例中学习了整个规则系统。我们没有直接从输入中预测输出,而是训练我们的模型,以借助神经程序综合文献的技术来诱导一组先前看到的示例的规则系统。我们的规则合成方法的表现优于三个领域中的神经元学习技术:用于评估人类学习的人工教学学习领域,扫描挑战数据集以及基于学习规则的基于学习规则的数字单词将数字单词转换为整数的人类语言。

Many aspects of human reasoning, including language, require learning rules from very little data. Humans can do this, often learning systematic rules from very few examples, and combining these rules to form compositional rule-based systems. Current neural architectures, on the other hand, often fail to generalize in a compositional manner, especially when evaluated in ways that vary systematically from training. In this work, we present a neuro-symbolic model which learns entire rule systems from a small set of examples. Instead of directly predicting outputs from inputs, we train our model to induce the explicit system of rules governing a set of previously seen examples, drawing upon techniques from the neural program synthesis literature. Our rule-synthesis approach outperforms neural meta-learning techniques in three domains: an artificial instruction-learning domain used to evaluate human learning, the SCAN challenge datasets, and learning rule-based translations of number words into integers for a wide range of human languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源