论文标题

la脚方程和板理论的几何方面

Geometric Aspects of the Lame Equation and Plate Theory

论文作者

Chen, Tsai-Jung, Hong, Ying-Ji

论文摘要

在过去的几年中,逐渐理解,de rham的共同体学理论与弹性理论中圣人的兼容条件密切相关。在本文中,我们将讨论隐藏在la脚方程和板理论中的Hodge理论和DE RHAM的共同论理论。我们将证明la脚方程解的分解定理,然后使用该分解定理提出修改的板理论,该理论与物理学的一般原理和lame方程的数学结构兼容。

Over the past few years, it is gradually understood that de Rham Cohomology Theory is closely related to Saint-Venant's compatibility condition in the Elasticity Theory. In this article, we will discuss the Hodge Theory and de Rham Cohomology Theory hidden in the Lame Equation and in the Plate Theory. we will prove a Decomposition Theorem for the solutions of the Lame Equation, and then use this Decomposition Theorem to present a modified Plate Theory, which is compatible with the general principles of Physics and the mathematical structure of the Lame Equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源