论文标题
大气组成和氮的可观察性主导了超短期的超级诞生
Atmospheric compositions and observability of nitrogen dominated ultra-short period super-Earths
论文作者
论文摘要
我们探讨了超短期期限超级地点的氮气主导大气的化学和可观察性。我们基于这样的假设,即超产星可以在55 CNC E的观察结果上具有氮气充满氮气,从而有利于具有高均值均分子量大气层的情况。我们将泰坦的元素预算作为起点,并使用化学动力学计算出许多可能的构图来获得热的地球。我们使用分析温度曲线并探索一个参数空间跨越c/o \&n/o比的数量级的参数空间,同时始终保持氮为主要成分。我们生成合成传播和发射光谱,并评估其未来James Webb太空望远镜和Ariel的潜在可观察性。我们的结果表明,HCN是高C/O比的强烈指标,这与H-Poins-Alighteres的大气相似。我们发现这些世界可能具有C/O> 1.0,并且HCN,CN,CO应该是在热发射中搜索的主要分子。对于较低的温度(t <1500 K),我们还在高N/O比例中找到NH3,而在低N/O比例中,C2H4,CH4在低HAI/O比例中是强吸收器。在这种大气中的氢消耗将使CN,CO和CO不可异常地在0.6-5.0 $ $ m范围内寻找。我们的模型表明,即将到来的JWST和ARIEL任务将能够以前所未有的信心来区分超短期期的超级诞生的大气组成。
We explore the chemistry and observability of nitrogen dominated atmospheres for ultra-short-period super-Earths. We base the assumption, that super-Earths could have nitrogen filled atmospheres, on observations of 55 Cnc e that favour a scenario with a high-mean-molecular-weight atmosphere. We take Titan's elemental budget as our starting point and using chemical kinetics compute a large range of possible compositions for a hot super-Earth. We use analytical temperature profiles and explore a parameter space spanning orders of magnitude in C/O \& N/O ratios, while always keeping nitrogen the dominant component. We generate synthetic transmission and emission spectra and assess their potential observability with the future James Webb Space Telescope and ARIEL. Our results suggest that HCN is a strong indicator of a high C/O ratio, which is similar to what is found for H-dominated atmospheres. We find that these worlds are likely to possess C/O > 1.0, and that HCN, CN, CO should be the primary molecules to be searched for in thermal emission. For lower temperatures (T < 1500 K), we additionally find NH3 in high N/O ratio cases, and C2H4, CH4 in low N/O ratio cases to be strong absorbers. Depletion of hydrogen in such atmospheres would make CN, CO and NO exceptionally prominent molecules to look for in the 0.6 - 5.0 $μ$m range. Our models show that the upcoming JWST and ARIEL missions will be able to distinguish atmospheric compositions of ultra-short period super-Earths with unprecedented confidence.