论文标题

Sobolev规范的令人惊讶的公式

A surprising formula for Sobolev norms

论文作者

Brezis, Haim, Van Schaftingen, Jean, Yung, Po-Lam

论文摘要

我们建立了Sobolev Semi-Norm $ \ | \ nabla u \ | _ {l^p} $与在将强$ l^p $替换为弱$ l^p $中获得的数量时,在gagliardo semi-norm中的弱$ l^p $ norm中获得的数量。作为推论,我们在某些特殊情况(涉及$ w^{1,1} $)中得出了替代性估计,其中“预期”部分Sobolev和Gagliardo-Nirenberg不平等失败了。

We establish the equivalence between the Sobolev semi-norm $\|\nabla u\|_{L^p}$ and a quantity obtained when replacing the strong $L^p$ by a weak $L^p$ norm in the Gagliardo semi-norm $|u|_{W^{s,p}}$ computed at $s = 1$. As corollaries we derive alternative estimates in some exceptional cases (involving $W^{1,1}$) where the "anticipated" fractional Sobolev and Gagliardo-Nirenberg inequalities fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源