论文标题

CASIA-SURF CEFA:多模式跨种族的基准反欺骗

CASIA-SURF CeFA: A Benchmark for Multi-modal Cross-ethnicity Face Anti-spoofing

论文作者

Li, Ajian, Tan, Zichang, Li, Xuan, Wan, Jun, Escalera, Sergio, Guo, Guodong, Li, Stan Z.

论文摘要

事实证明,种族偏见会对面部识别系统的性能产生负面影响,并且在面部反欺骗中仍然是一个开放的研究问题。为了研究面部反欺骗的种族偏见,我们介绍了最新的最新情况,最新的casia-surf跨种族面对抗烟气(CEFA)数据集(简短命名为CEFA),涵盖$ 3 $族裔,$ 3 $,$ 3 $模式,$ 1,607 $ 1,607 $ $ 1,607 $和2D攻击类型。引入了四个方案,以衡量各种评估条件下的影响,例如跨种族,未知的欺骗或两者。据我们所知,CEFA是第一个数据集,其中包括当前发布/发布的数据集中的明确种族标签,用于面部反欺骗。然后,我们提出了一种新型的多模式融合方法,作为缓解这些偏见的强基线,即,在每种模态中应用的静态动力融合机制(即RGB,深度和红外图像)。后来,提出了一种部分共享的融合策略,以从多种方式中学习互补信息。广泛的实验表明,所提出的方法可以在Casia-Surf,Oulu-NPU,SIW和CEFA数据集上实现最先进的结果。

Ethnic bias has proven to negatively affect the performance of face recognition systems, and it remains an open research problem in face anti-spoofing. In order to study the ethnic bias for face anti-spoofing, we introduce the largest up to date CASIA-SURF Cross-ethnicity Face Anti-spoofing (CeFA) dataset (briefly named CeFA), covering $3$ ethnicities, $3$ modalities, $1,607$ subjects, and 2D plus 3D attack types. Four protocols are introduced to measure the affect under varied evaluation conditions, such as cross-ethnicity, unknown spoofs or both of them. To the best of our knowledge, CeFA is the first dataset including explicit ethnic labels in current published/released datasets for face anti-spoofing. Then, we propose a novel multi-modal fusion method as a strong baseline to alleviate these bias, namely, the static-dynamic fusion mechanism applied in each modality (i.e., RGB, Depth and infrared image). Later, a partially shared fusion strategy is proposed to learn complementary information from multiple modalities. Extensive experiments demonstrate that the proposed method achieves state-of-the-art results on the CASIA-SURF, OULU-NPU, SiW and the CeFA dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源