论文标题

在一台FIFO服务器中偷窃的秘密周期

Covert Cycle Stealing in a Single FIFO Server

论文作者

Jiang, Bo, Nain, Philippe, Towsley, Don

论文摘要

考虑一个设置Willie生成泊松的作业流,并将其路由到遵循第一阶段纪律之后的单个服务器。假设有一个对手爱丽丝(Alice Alice),他希望在没有被发现的情况下获得服务。我们问一个问题:她可以秘密地收到的工作数量是多少,即未被威利发现的工作数量?如果威利(Willie)和爱丽丝(Alice)的工作都具有指数的服务时间,而$μ_1$和$μ_2$的速度,当爱丽丝(Alice)采用概率地插入服务器的策略时,当$ n $ n $忙碌的期间以超过$ n $忙碌的期间,她可以通过秘密的秘密来实现cover的预期数字,当时,我们证明了一种阶段过渡。 $ \ Mathcal {o}(\ sqrt {n})$当$μ_1<2μ_2$,$ \ MATHCAL {O}(\ sqrt {\ sqrt {n/\ log n})$ n时2μ_2$。当威利(Willie)和爱丽丝(Alice)的工作都有一般服务时间时,我们为爱丽丝(Alice)可以秘密执行的工作数量建立了上限。该界限与Fisher信息有关。还讨论了更一般的插入政策。

Consider a setting where Willie generates a Poisson stream of jobs and routes them to a single server that follows the first-in first-out discipline. Suppose there is an adversary Alice, who desires to receive service without being detected. We ask the question: what is the number of jobs that she can receive covertly, i.e. without being detected by Willie? In the case where both Willie and Alice jobs have exponential service times with respective rates $μ_1$ and $μ_2$, we demonstrate a phase-transition when Alice adopts the strategy of inserting a single job probabilistically when the server idles : over $n$ busy periods, she can achieve a covert throughput, measured by the expected number of jobs covertly inserted, of $\mathcal{O}(\sqrt{n})$ when $μ_1 < 2μ_2$, $\mathcal{O}(\sqrt{n/\log n})$ when $μ_1 = 2μ_2$, and $\mathcal{O}(n^{μ_2/μ_1})$ when $μ_1 > 2μ_2$. When both Willie and Alice jobs have general service times we establish an upper bound for the number of jobs Alice can execute covertly. This bound is related to the Fisher information. More general insertion policies are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源