论文标题
用耦合的拉曼和纳米凹痕测量的水合钙氢化钙的化学机械表征
Chemo-mechanical characterization of hydrated Calcium-Hydrosilicates with coupled Raman and nanoindentation measurements
论文作者
论文摘要
天然化是一种基于液压钙氢硅酸盐(HCHS)的一种新型水泥,它具有最大程度地降低OPC的比率为1的c/s的可能性,从而大大降低了处理过程中释放的CO $ _2 $的量。 HCHS的反应动力学与经典熟料相的反应动力学不同,这是由于存在高反应性硅酸盐物种而不是硅烷酚基团而不是纯钙硅酸盐和铝含铝和铝烯氧化甲硅酸盐。与波特兰水泥相反,在水合过程中未形成氢氧化钙,否则可以调节Ca浓度。如果没有CA(OH)$ _ 2 $缓冲作用,则溶解物种C(Ca $^{2+} $)的浓度和C(Sio $ _4^{4 - } $),必须控制相应的pH值以确保可再现反应。纯HCHS与水等离子反应,导致C-S-H相具有与单个水合产物相同的化学成分,并且在整个样品中主元素Ca和Si的均匀分布。在这里,我们通过纳米识别研究了由天然素制成的两种不同类型的硬化糊的机械性能(C/s = 1.28),其HCH量不同,水与水泥比的变化。我们将纳米构型网格与拉曼映射将纳米级的力学特性与单个微观结构组件联系起来,从而深入了解构成硬化水泥糊的矿物学阶段的力学。我们表明,我们可以使用特定的拉曼光谱在硬化的粘性中鉴定出具有不同密度的新鲜C-S-H,而从原材料中鉴定出C-S-H,同时测量了它们的机械性能。尽管不适合相识别,但EDX测量值提供了有关碱分布的宝贵信息,因此进一步有助于了解HCH的反应模式。
Celitement is a new type of cement that is based on hydraulic calcium-hydrosilicate (hCHS) that possesses a potential for minimizing the ratio C/S from above 3 in OPC down to 1, which significantly reduces the amount of CO$_2$ released during processing. The reaction kinetics of hCHS differs from that of classical clinker phases due to the presence of highly reactive silicate species, which involve silanol groups instead of pure calcium silicates and aluminates and aluminoferrites. In contrast to Portland cement, no calcium hydroxide is formed during hydration, which otherwise regulates the Ca concentration. Without the buffering role of Ca(OH)$_2$ the concentration of the dissolved species c(Ca$^{2+}$) and c(SiO$_4^{4-}$) and the corresponding pH must be controlled to ensure a reproducible reaction. Pure hCHS reacts isochemically with water, resulting in a C-S-H phase with the same chemical composition as a single hydration product, with a homogeneous distribution of the main elements Ca and Si throughout the sample. Here we study via nanoindentation the mechanical properties of two different types of hardened pastes made out of Celitement (C/S=1.28), with varying amounts of hCHS and variable water to cement ratio. We couple nanoindentation grids with Raman mappings to link the nanoscale mechanical properties to individual microstructural components, yielding in-depth insight into the mechanics of the mineralogical phases constituting the hardened cement paste. We show that we can identify in hardened Celitement paste both fresh C-S-H with varying density, and C-S-H from the raw material using their specific Raman spectra, while simultaneously measuring their mechanical properties. Albeit not suitable for phase identification, EDX measurements provide valuable information about the distribution of alkalis, thus further helping to understand the reaction pattern of hCHS.