论文标题
学习国家依赖性损失用于反向动态学习
Learning State-Dependent Losses for Inverse Dynamics Learning
论文作者
论文摘要
能够快速适应动态变化是基于模型的对象操作任务的控制。为了影响反动力学模型参数的快速适应,数据效率至关重要。给定观察到的数据,优化器更新模型参数的关键元素是损耗函数。在这项工作中,我们建议在元训练阶段使用元学习来学习结构化的,状态依赖的损失函数。然后,我们在在线适应任务期间通过学习的损失代替了标准损失。我们在模拟和真实硬件数据上评估了有关反动力学学习任务的建议方法。在这两种情况下,与标准的,独立的,独立的损失功能相比,结构化和国家依赖的学习损失提高了在线适应速度。
Being able to quickly adapt to changes in dynamics is paramount in model-based control for object manipulation tasks. In order to influence fast adaptation of the inverse dynamics model's parameters, data efficiency is crucial. Given observed data, a key element to how an optimizer updates model parameters is the loss function. In this work, we propose to apply meta-learning to learn structured, state-dependent loss functions during a meta-training phase. We then replace standard losses with our learned losses during online adaptation tasks. We evaluate our proposed approach on inverse dynamics learning tasks, both in simulation and on real hardware data. In both settings, the structured and state-dependent learned losses improve online adaptation speed, when compared to standard, state-independent loss functions.