论文标题
多任务复发性神经网络,用于手术手势识别和进度预测
Multi-Task Recurrent Neural Network for Surgical Gesture Recognition and Progress Prediction
论文作者
论文摘要
手术手势识别对于手术数据科学和计算机辅助干预很重要。即使有了机器人运动信息,自动分割手术步骤也会提出许多挑战,因为手术演示的特征是风格,持续时间和作用顺序的差异很大。为了从运动学信号中提取判别特征并提高识别精度,我们提出了一个多任务复发性神经网络,以同时识别手术手术,并估算了手术任务进度的新表述。为了显示提出方法的有效性,我们评估了其在拼图数据集上的应用,该数据集是目前唯一可公开可用的手术手势识别数据集,该数据集具有机器人运动学数据。我们证明,具有进度估算的多任务框架中的识别性能会提高,而无需任何其他手动标签和培训。
Surgical gesture recognition is important for surgical data science and computer-aided intervention. Even with robotic kinematic information, automatically segmenting surgical steps presents numerous challenges because surgical demonstrations are characterized by high variability in style, duration and order of actions. In order to extract discriminative features from the kinematic signals and boost recognition accuracy, we propose a multi-task recurrent neural network for simultaneous recognition of surgical gestures and estimation of a novel formulation of surgical task progress. To show the effectiveness of the presented approach, we evaluate its application on the JIGSAWS dataset, that is currently the only publicly available dataset for surgical gesture recognition featuring robot kinematic data. We demonstrate that recognition performance improves in multi-task frameworks with progress estimation without any additional manual labelling and training.