论文标题
基于GA特征选择和随机森林的蜘蛛病变诊断
Spitzoid Lesions Diagnosis based on GA feature selection and Random Forest
论文作者
论文摘要
刺杀病变广泛地分为Spitz Nevus(SN),非典型Spitz肿瘤(AST)和Spitz Melanomas(SM)。这些病变的准确诊断是皮肤病学家最大的挑战之一。这是由于它们之间的相似之处。数据挖掘技术成功地应用于存在复杂性的情况下。这项研究旨在开发一种人工智能模型,以支持唾液病变的诊断。已经使用私人蜘蛛病变数据集评估本研究中提出的系统。拟议的系统有三个阶段。在第一阶段,SMOTE方法应用于第二阶段的不平衡数据问题,以消除无关的特征。遗传算法用于选择重要特征。后来,这降低了计算复杂性并加快了数据挖掘过程。在第三阶段,随机森林分类器被用来决定两种不同类别的病变(Spitz Nevus或非典型Spitz肿瘤)。使用准确性,灵敏度,特异性,G均,F-MEAC,ROC和AUC评估我们提出的方案的性能。使用我们的Smote-GA-RF模型获得的具有GA基于GA的16个功能的结果表现出色,其精度为0.97,F-Measure 0.98,AUC 0.98和G-MEAN 0.97。在这项研究中获得的结果有可能在诊断唾液病病变的诊断方面开放新的机会。
Spitzoid lesions broadly categorized into Spitz Nevus (SN), Atypical Spitz Tumors (AST), and Spitz Melanomas (SM). The accurate diagnosis of these lesions is one of the most challenges for dermapathologists; this is due to the high similarities between them. Data mining techniques are successfully applied to situations like these where complexity exists. This study aims to develop an artificial intelligence model to support the diagnosis of Spitzoid lesions. A private spitzoid lesions dataset have been used to evaluate the system proposed in this study. The proposed system has three stages. In the first stage, SMOTE method applied to solve the imbalance data problem, in the second stage, in order to eliminate irrelevant features; genetic algorithm is used to select significant features. This later reduces the computational complexity and speed up the data mining process. In the third stage, Random forest classifier is employed to make a decision for two different categories of lesions (Spitz nevus or Atypical Spitz Tumors). The performance of our proposed scheme is evaluated using accuracy, sensitivity, specificity, G-mean, F- measure, ROC and AUC. Results obtained with our SMOTE-GA-RF model with GA-based 16 features show a great performance with accuracy 0.97, F-measure 0.98, AUC 0.98, and G-mean 0.97.Results obtained in this study have potential to open new opportunities in diagnosis of spitzoid lesions.