论文标题
(最大,+)和(min,+)代数中的P时事件图分析
Analysis of P-time Event Graphs in (Max,+) and (Min,+) Algebras
论文作者
论文摘要
在这项工作中,我们调查了P时间事件图的行为,该类别的时间是彼得里斯的培养皿网,该培养皿具有非确定性的位置时间。我们的方法基于(最大,+)和(min,+)半段中的联合线性描述,其中状态向量的下限为(max,+) - 线性和上限是(最小,+) - 线性。我们提供了从新描述中得出的极端(最快,最慢)的周期性轨迹的必要条件。结果通过电镀过程的现实示例来说明。
In this work we investigate the behavior of P-time event graphs, a class of time Petri nets with nondeterministic timing of places. Our approach is based on combined linear descriptions in both (max,+) and (min,+) semirings, where lower bounds on the state vector are (max,+)-linear and upper bounds are (min,+)-linear. We present necessary and sufficient conditions for the existence of extremal (fastest and slowest) periodic trajectories that are derived from the new description. The results are illustrated by a realistic example of an electroplating process.