论文标题
拉格朗日神经网络
Lagrangian Neural Networks
论文作者
论文摘要
世界上准确的模型建立在其基础对称性的概念上。在物理学中,这些对称性对应于保护法,例如能量和动量。然而,尽管神经网络模型在物理科学中的使用越来越多,但他们仍在努力学习这些对称性。在本文中,我们提出了Lagrangian神经网络(LNNS),可以使用神经网络参数化任意的Lagrangians。与学习哈密顿量的模型相反,LNN不需要规范的坐标,因此在规范动量不明或难以计算的情况下表现良好。与以前的方法不同,我们的方法不限制学习能量的功能形式,并且会为各种任务生成能源持持续的模型。我们在双摆和相对论的粒子上测试我们的方法,这证明了能量保护,其中基线方法会导致耗散和建模相对性,而没有规范的坐标,而在大麻量失败的情况下。最后,我们展示了如何使用拉格朗日图网络将该模型应用于图形和连续系统,并在1D Wave方程式上演示。
Accurate models of the world are built upon notions of its underlying symmetries. In physics, these symmetries correspond to conservation laws, such as for energy and momentum. Yet even though neural network models see increasing use in the physical sciences, they struggle to learn these symmetries. In this paper, we propose Lagrangian Neural Networks (LNNs), which can parameterize arbitrary Lagrangians using neural networks. In contrast to models that learn Hamiltonians, LNNs do not require canonical coordinates, and thus perform well in situations where canonical momenta are unknown or difficult to compute. Unlike previous approaches, our method does not restrict the functional form of learned energies and will produce energy-conserving models for a variety of tasks. We test our approach on a double pendulum and a relativistic particle, demonstrating energy conservation where a baseline approach incurs dissipation and modeling relativity without canonical coordinates where a Hamiltonian approach fails. Finally, we show how this model can be applied to graphs and continuous systems using a Lagrangian Graph Network, and demonstrate it on the 1D wave equation.