论文标题

使用Gramians插值的参数线性系统的平衡截断:代数和几何方法的比较

Balanced truncation for parametric linear systems using interpolation of Gramians: a comparison of algebraic and geometric approaches

论文作者

Son, Nguyen Thanh, Gousenbourger, Pierre-Yves, Massart, Estelle, Stykel, Tatjana

论文摘要

当使用平衡的截断用于降低模型订单时,必须为两个Gramians求解一对Lyapunov方程,并使用它们来构建降级模型。尽管已经取得了求解此类方程式的进步,但它仍然是这种减少方法中最昂贵的一步。参数模型订单降低旨在确定参数依赖性系统的减少阶模型。参数模型降低的流行技术取决于插值。然而,很少提到格拉米亚人的插值,很可能是由于Gramians是对称的阳性半芬属矩阵,该属性应通过插值方法保存。在这项贡献中,我们提出并比较了格拉米亚插值的两种方法。在第一种方法中,将插值的Gramian计算为具有正系数的数据Gramians的线性组合。即使在这种方法中保证了阳性的半铁质,但插值的格拉米亚人的等级可能明显大于Gramians的排名。第二种方法旨在通过对固定级阳性半足质矩阵的多种插值进行插值来解决这个问题。然后,使用插值步骤的结果来构建参数还原阶模型,这些模型在两个基准问题上进行数值比较。

When balanced truncation is used for model order reduction, one has to solve a pair of Lyapunov equations for two Gramians and uses them to construct a reduced-order model. Although advances in solving such equations have been made, it is still the most expensive step of this reduction method. Parametric model order reduction aims to determine reduced-order models for parameter-dependent systems. Popular techniques for parametric model order reduction rely on interpolation. Nevertheless, the interpolation of Gramians is rarely mentioned, most probably due to the fact that Gramians are symmetric positive semidefinite matrices, a property that should be preserved by the interpolation method. In this contribution, we propose and compare two approaches for Gramian interpolation. In the first approach, the interpolated Gramian is computed as a linear combination of the data Gramians with positive coefficients. Even though positive semidefiniteness is guaranteed in this method, the rank of the interpolated Gramian can be significantly larger than that of the data Gramians. The second approach aims to tackle this issue by performing the interpolation on the manifold of fixed-rank positive semidefinite matrices. The results of the interpolation step are then used to construct parametric reduced-order models, which are compared numerically on two benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源