论文标题
运营商代数在Banach空间的代数之间的溢出性同态扰动
Perturbations of surjective homomorphisms between algebras of operators on Banach spaces
论文作者
论文摘要
Molnár的显着结果[Proc。阿米尔。数学。 Soc。,126(1998),853-861]指出,在“小”扰动下,作用于可分离的希尔伯特空间的操作员代数的自动形态是稳定的。更确切地说,如果$ ϕ,ψ$是$ \ Mathcal {b}(\ Mathcal {h})$的内态性,以至于$ \ | ϕ(a) - ψ(a)\ | <\ | a \ | a \ | $ and $ψ$是$ ϕ $。本文的目的是将此结果扩展到更大类别的Banach空间,包括$ \ ell_p $和$ l_p $ spaces($ 1 <p <+\ \ infty $)。在通往证明的途中,我们证明,对于上述班级中的任何Banach Space $ x $,所有忠实,Unital,可分开,反身表示$ \ Mathcal b(x)$保留等级的一台操作员实际上是同构的。
A remarkable result of Molnár [Proc. Amer. Math. Soc., 126 (1998), 853-861] states that automorphisms of the algebra of operators acting on a separable Hilbert space is stable under "small" perturbations. More precisely, if $ϕ,ψ$ are endomorphisms of $\mathcal{B}(\mathcal{H})$ such that $\|ϕ(A)-ψ(A)\|<\|A\|$ and $ψ$ is surjective then so is $ϕ$. The aim of this paper is to extend this result to a larger class of Banach spaces including $\ell_p$ and $L_p$ spaces ($1<p<+\infty$). En route to the proof we show that for any Banach space $X$ from the above class all faithful, unital, separable, reflexive representations of $\mathcal B (X)$ which preserve rank one operators are in fact isomorphisms.