论文标题

CMETRIC:使用中心功能的驾驶行为度量

CMetric: A Driving Behavior Measure Using Centrality Functions

论文作者

Chandra, Rohan, Bhattacharya, Uttaran, Mittal, Trisha, Bera, Aniket, Manocha, Dinesh

论文摘要

我们提出了一种新的措施Cmetric,可以使用中心功能对驱动器行为进行分类。我们的表述结合了计算图理论和社会交通心理学的概念,以量化和分类人类驱动因素的行为。 CMETRIC用于计算车辆执行驾驶样式的概率,以及用于执行该样式的强度。我们的方法是为实时自动驾驶应用程序而设计的,其中每辆车或道路代理的轨迹都是从视频中提取的。我们根据与接近度和程度相对应的道路代理和中心函数的位置和接近度计算动态几何图(DG​​G)。这些功能用于根据样式的可能性和样式强度估计来计算计数。我们的方法是一般的,并且没有对交通密度,异质性或驾驶行为随时间变化的变化的假设。我们提出了一种计算CMETRIC的算法,并在现实世界流量数据集上演示了其性能。为了测试CMETRIC的准确性,我们引入了一种新的评估协议(称为“时间偏差误差”),该方案衡量了人类预测与CMETRIC预测之间的差异。

We present a new measure, CMetric, to classify driver behaviors using centrality functions. Our formulation combines concepts from computational graph theory and social traffic psychology to quantify and classify the behavior of human drivers. CMetric is used to compute the probability of a vehicle executing a driving style, as well as the intensity used to execute the style. Our approach is designed for realtime autonomous driving applications, where the trajectory of each vehicle or road-agent is extracted from a video. We compute a dynamic geometric graph (DGG) based on the positions and proximity of the road-agents and centrality functions corresponding to closeness and degree. These functions are used to compute the CMetric based on style likelihood and style intensity estimates. Our approach is general and makes no assumption about traffic density, heterogeneity, or how driving behaviors change over time. We present an algorithm to compute CMetric and demonstrate its performance on real-world traffic datasets. To test the accuracy of CMetric, we introduce a new evaluation protocol (called "Time Deviation Error") that measures the difference between human prediction and the prediction made by CMetric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源