论文标题
通过神经网络学习熵生产
Learning entropy production via neural networks
论文作者
论文摘要
这封信提供了用于熵产生或NEEP的神经估计量,该神经估计来自相关变量的轨迹,而没有系统动力学的详细信息。对于稳定状态,我们严格地证明,可以从深度神经网络的不同选择中构建的估计器通过优化此处提出的目标函数提供随机EP。我们通过珠子弹簧和离散的闪烁棘轮模型的随机过程验证NEEP,还证明我们的方法适用于高维数据,并且可以为具有无法观察到状态的Markov系统提供粗粒的EP。
This Letter presents a neural estimator for entropy production, or NEEP, that estimates entropy production (EP) from trajectories of relevant variables without detailed information on the system dynamics. For steady state, we rigorously prove that the estimator, which can be built up from different choices of deep neural networks, provides stochastic EP by optimizing the objective function proposed here. We verify the NEEP with the stochastic processes of the bead-spring and discrete flashing ratchet models, and also demonstrate that our method is applicable to high-dimensional data and can provide coarse-grained EP for Markov systems with unobservable states.