论文标题

更快的ILOD:基于更快的RCNN的对象检测器的增量学习

Faster ILOD: Incremental Learning for Object Detectors based on Faster RCNN

论文作者

Peng, Can, Zhao, Kun, Lovell, Brian C.

论文摘要

人类的愿景和感知系统本质上是渐进的,在保留现有知识的同时,随着时间的推移不断学习新知识。另一方面,深度学习网络对于逐步学习而设备不足。当训练有素的网络适应新类别时,其在旧类别上的性能将极大地降级。为了解决这个问题,已经探索了维护深度学习模型的旧知识的增量学习方法。但是,最新的增量对象检测器采用了一种外部固定区域建议方法,该方法增加了总体计算时间并降低了与基于区域建议网络(RPN)基于的对象检测器(例如更快的RCNN)相比的准确性。本文的目的是使用知识蒸馏设计有效的端到端增量对象检测器。我们首先使用经典蒸馏来评估和分析基于RPN的检测器的性能。然后,我们介绍了多网自适应蒸馏,在微调模型以完成新任务时,该蒸馏会正确保留旧类别的知识。基准数据集(Pascal VOC和可可)上的实验表明,基于更快的RCNN的提议增量检测器比基线检测器快13倍。

The human vision and perception system is inherently incremental where new knowledge is continually learned over time whilst existing knowledge is retained. On the other hand, deep learning networks are ill-equipped for incremental learning. When a well-trained network is adapted to new categories, its performance on the old categories will dramatically degrade. To address this problem, incremental learning methods have been explored which preserve the old knowledge of deep learning models. However, the state-of-the-art incremental object detector employs an external fixed region proposal method that increases overall computation time and reduces accuracy comparing to Region Proposal Network (RPN) based object detectors such as Faster RCNN. The purpose of this paper is to design an efficient end-to-end incremental object detector using knowledge distillation. We first evaluate and analyze the performance of the RPN-based detector with classic distillation on incremental detection tasks. Then, we introduce multi-network adaptive distillation that properly retains knowledge from the old categories when fine-tuning the model for new task. Experiments on the benchmark datasets, PASCAL VOC and COCO, demonstrate that the proposed incremental detector based on Faster RCNN is more accurate as well as being 13 times faster than the baseline detector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源