论文标题
区分耀斑和非弹性的活动区域:机器学习观点
Distinguishing between Flaring and Non-Flaring Active Regions: A Machine Learning Perspective
论文作者
论文摘要
大规模的太阳爆发显着影响太空的天气,并损害了空间的人类基础设施。有必要预测大规模的太阳喷发,这将使我们能够保护现代社会的脆弱基础设施。我们旨在调查耀斑和非力活动区域之间的差异。我们使用来自太阳能天文台的Heliose震动磁成像仪的Photopheric矢量磁力图数据来研究太阳表面上光球磁参数的时间演化。我们构建了一个从2010年到2017年在太阳表面上观察到的耀斑和非力活动区域的数据库。我们在这些活动区域参数的时间演变之前训练机器学习算法。最后,我们估计从该机器学习算法获得的性能。我们发现某些磁性参数的强度,即与非电压相比,弹性活性区域中的总未签名磁性通量,总未签名磁螺旋性,总未签名的垂直电流和总光球磁能密度要高得多。燃烧活性区域中的这些磁参数是高度发展且复杂的。我们能够获得良好的预测能力,并具有相对较高的真实技能统计值(TSS)的价值。我们还发现,总未签名的磁性螺旋性和总未签名磁通量的时间演变具有很高的区分耀斑和非力活动区域的能力。可以很好地将耀斑的活性区域与非力分区分开,以良好的准确性。我们确认没有单个公共参数可以将所有燃烧的活性区域与非燃烧区分开。但是,前几个磁参数的时间演变,即总未签名磁通量和总未签名磁性螺旋性具有很高的区分能力。
Large scale solar eruptions significantly impact space weather and damages space-based human infrastructures. It is necessary to predict large scale solar eruptions, which will enable us to protect our vulnerable infrastructures of modern society. We aim to investigate the difference between flaring and non-flaring active regions. We use photospheric vector magnetogram data from Solar Dynamic Observatory's Helioseismic Magnetic Imager to study the time evolution of photospheric magnetic parameters on the solar surface. We build a database of flaring and non-flaring active region observed on the solar surface from the years 2010 to 2017. We train the machine learning algorithm by the time evolution of these active region parameters. Finally, we estimate the performance obtained from this machine learning algorithm. We find the strength of some magnetic parameters namely total unsigned magnetic flux, total unsigned magnetic helicity, total unsigned vertical current and total photospheric magnetic energy density in flaring active regions are much higher compared to the non-flaring ones. These magnetic parameters in the flaring active region are highly evolving and complex. We are able to obtain good forecasting capability with a relatively high value of true skill statistic (TSS). We also find that time evolution of total unsigned magnetic helicity and total unsigned magnetic flux have very high ability to distinguish flaring and non-flaring active regions. It is possible to distinguish flaring active region from the non-flaring one with good accuracy. We confirm that there is no single common parameter which can distinguish all flaring active regions from the non flaring one. However, time evolution of top few magnetic parameters namely total unsigned magnetic flux and total unsigned magnetic helicity have very high distinguishing capability.