论文标题
$ j_ {e_t}^{(i)} $和$ j_ {e_t}^{(ii)} $ j_ {(ii)} $ j_ {(i)} $ j_ {e_t}^{(i)} $ j_
Semi-Inclusive Jet Functions and Jet Substructure in $J_{E_T}^{(I)}$ and $J_{E_T}^{(II)}$ Algorithms
论文作者
论文摘要
在软共线性有效理论的框架内,我们为Quark-和Gluon引起的Jets的近代领先顺序(NLO)介绍了对$ J_ {e_t}^{(i)} $ j_ j_ {e__ {e _ op joid j的$ j_ {e_t}^{(nlo)的计算。我们证明了获得的结果的一致性,该结果与$ j_ {e_t}^{(i)} $ algorithm的标准扰动QCD计算,而碎片喷射的结果则以$ j_ {e_t}^{e_t}^{(ii)} $ algorithm是新的。得出了半成分射流功能和碎片喷射函数的重新归一化组(RG)方程,并显示出与特定的射流算法无关的时间样DGLAP演化方程。 RG方程可用于在这些算法中重新恢复高度准直喷的射流大小参数$β$,其中$β\ gg 1 $。
Within the framework of Soft Collinear Effective Theory, we present calculations of semi-inclusive jet functions and fragmenting jet functions at next-to-leading order (NLO) for both quark- and gluon-initiated jets, for jet algorithms of $J_{E_T}^{(I)}$ and $J_{E_T}^{(II)}$ where one maximizes a suitable jet function. We demonstrate the consistency of the obtained results with the standard perturbative QCD calculations for $J_{E_T}^{(I)}$ algorithm, while the results for fragmenting jet functions with the $J_{E_T}^{(II)}$ algorithm are new. The renormalization group (RG) equation for both semi-inclusive jet functions and fragmenting jet functions are derived and shown to follow the time-like DGLAP evolution equations, independent of specific jet algorithms. The RG equation can be used to resum single logarithms of the jet size parameter $β$ for highly collimated jets in these algorithms where $β\gg 1$.