论文标题
组合优化的强化学习:调查
Reinforcement Learning for Combinatorial Optimization: A Survey
论文作者
论文摘要
许多用于解决组合优化问题的传统算法涉及使用手工制作的启发式方法来依次构建解决方案。这样的启发式方法是由领域专家设计的,由于问题的艰难性质,通常可能是最佳的。强化学习(RL)提出了一种很好的替代方法,可以通过以有监督或自我监督的方式训练代理商来自动搜索这些启发式方法。在这项调查中,我们探讨了将RL框架应用于硬组合问题的最新进展。我们的调查为运营研究和机器学习社区提供了必要的背景,并展示了正在推进该领域的作品。我们最近提出的RL方法并列,为每个问题提供了改进的时间表,以及我们与传统算法进行比较,表明RL模型可以成为解决组合问题的有希望的方向。
Many traditional algorithms for solving combinatorial optimization problems involve using hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed by domain experts and may often be suboptimal due to the hard nature of the problems. Reinforcement learning (RL) proposes a good alternative to automate the search of these heuristics by training an agent in a supervised or self-supervised manner. In this survey, we explore the recent advancements of applying RL frameworks to hard combinatorial problems. Our survey provides the necessary background for operations research and machine learning communities and showcases the works that are moving the field forward. We juxtapose recently proposed RL methods, laying out the timeline of the improvements for each problem, as well as we make a comparison with traditional algorithms, indicating that RL models can become a promising direction for solving combinatorial problems.