论文标题
椭圆形的椭圆形的椭圆形的属于紫红色的高卡勒歧管
Elliptic canonical bases for toric hyper-Kahler manifolds
论文作者
论文摘要
Lusztig定义了slo诗品种的模棱两可的K理论上的某些参数,并给出了某些碱的表征称为规范基础。在本文中,我们对这些相互作用的概括和K理论的规范基础进行了猜想,这些分辨率具有良好的汉密尔顿圆环动作,并陈述了与它们相关的几种猜想,我们检查了我们是否检查了感谢您的Hyper-Kahler歧管。我们还提出了这些律师条件的椭圆类似物。作为对我们建议的验证,我们明确构建了K理论规范底座的椭圆形升力,并证明它们在椭圆形的椭圆形Hyper-kahler歧管的椭圆栏中是不变的。
Lusztig defined certain involutions on the equivariant K-theory of Slodowy varieties and gave a characterization of certain bases called canonical bases. In this paper, we give a conjectural generalization of these involutions and K-theoretic canonical bases to conical symplectic resolutions which have good Hamiltonian torus actions and state several conjectures related to them which we check for toric hyper-Kahler manifolds. We also propose an elliptic analogue of these bar involutions. As a verification of our proposal, we explicitly construct elliptic lifts of K-theoretic canonical bases and prove that they are invariant under elliptic bar involutions for toric hyper-Kahler manifolds.