论文标题

基于多模式状态的车辆描述符和卷积的社交池,用于车辆轨迹预测

A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional Social Pooling for Vehicle Trajectory Prediction

论文作者

Zhang, Huimin, Wang, Yafei, Liu, Junjia, Li, Chengwei, Ma, Taiyuan, Yin, Chengliang

论文摘要

周围车辆的精确轨迹预测对于自动驾驶汽车的决策至关重要,并且基于学习的方法的鲁棒性得到了很好的认可。但是,基于最新的学习方法忽略1)车辆多模式状态信息对预测的可行性以及2)在建模车辆相互作用时,全球交通现场接收场与本地位置分辨率之间的相互独家关系,这可能会影响预测准确性。因此,我们提出了一个基于车辆描述符的LSTM模型,该模型具有扩张的卷积社会合并(VD+DCS-LSTM),以应对上述问题。首先,提议每辆车的多模式状态信息用作模型的输入,并提出了由堆叠的稀疏自动编码器编码的新车辆描述符,以反映各种状态之间的深层交互关系,从而实现了最佳特征提取和有效使用多模式输入。其次,LSTM编码器用于编码由车辆描述符组成的历史序列,并提出了一种新型的扩张卷积社会池,以改善建模车辆的空间相互作用。第三,LSTM解码器用于预测基于操纵的未来轨迹的概率分布。在NGSIM US-101和I-80数据集上验证了整个模型的有效性,我们的方法的表现优于最新的基准。

Precise trajectory prediction of surrounding vehicles is critical for decision-making of autonomous vehicles and learning-based approaches are well recognized for the robustness. However, state-of-the-art learning-based methods ignore 1) the feasibility of the vehicle's multi-modal state information for prediction and 2) the mutual exclusive relationship between the global traffic scene receptive fields and the local position resolution when modeling vehicles' interactions, which may influence prediction accuracy. Therefore, we propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues. First, each vehicle's multi-modal state information is employed as our model's input and a new vehicle descriptor encoded by stacked sparse auto-encoders is proposed to reflect the deep interactive relationships between various states, achieving the optimal feature extraction and effective use of multi-modal inputs. Secondly, the LSTM encoder is used to encode the historical sequences composed of the vehicle descriptor and a novel dilated convolutional social pooling is proposed to improve modeling vehicles' spatial interactions. Thirdly, the LSTM decoder is used to predict the probability distribution of future trajectories based on maneuvers. The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets and our method outperforms the latest benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源