论文标题
超深:用于使用深度学习的机器人组织操纵的手术感知框架
SuPer Deep: A Surgical Perception Framework for Robotic Tissue Manipulation using Deep Learning for Feature Extraction
论文作者
论文摘要
手术中的机器人自动化需要精确跟踪手术工具和可变形组织的映射。先前关于手术感知框架的作品需要大量精力开发用于手术工具和组织跟踪的功能。在这项工作中,我们通过利用深度学习方法来克服挑战。我们将能够有效提取的深层神经网络集成到组织重建和仪器姿势估计过程中。通过利用转移学习,基于深度学习的方法需要最少的培训数据,并减少功能工程工作,以充分感知手术场景。该框架在使用DA Vinci手术系统的三个公开数据集上进行了测试,以进行全面分析。实验结果表明,我们的框架通过使用深度学习进行特征提取,从而在手术环境中实现了最新的跟踪性能。
Robotic automation in surgery requires precise tracking of surgical tools and mapping of deformable tissue. Previous works on surgical perception frameworks require significant effort in developing features for surgical tool and tissue tracking. In this work, we overcome the challenge by exploiting deep learning methods for surgical perception. We integrated deep neural networks, capable of efficient feature extraction, into the tissue reconstruction and instrument pose estimation processes. By leveraging transfer learning, the deep learning based approach requires minimal training data and reduced feature engineering efforts to fully perceive a surgical scene. The framework was tested on three publicly available datasets, which use the da Vinci Surgical System, for comprehensive analysis. Experimental results show that our framework achieves state-of-the-art tracking performance in a surgical environment by utilizing deep learning for feature extraction.