论文标题

用于检测多模Wigner阴性的神经网络

Neural networks for detecting multimode Wigner-negativity

论文作者

Cimini, Valeria, Barbieri, Marco, Treps, Nicolas, Walschaers, Mattia, Parigi, Valentina

论文摘要

在大希尔伯特空间中量子特征的表征是测试量子方案的关键要求。在编码的连续变量中,量子同型断层扫描需要大量的测量值,这些测量与所涉及模式的数量成倍增加,这实际上使协议变得棘手了,即使使用了很少的模式。在这里,我们基于具有人工神经网络的机器学习协议介绍了一种新技术,该方案允许直接检测多模量子状态的Wigner函数的负函数。我们在一类数字模拟的多模量子状态上测试了该过程,该状态在分析中已知Wigner函数。我们证明,当有限的数据可用时,该方法比常规方法快速,准确,更健壮。此外,该方法应用于实验多模量子状态,为此,对此进行了对损失的弹性测试。

The characterization of quantum features in large Hilbert spaces is a crucial requirement for testing quantum protocols. In the continuous variables encoding, quantum homodyne tomography requires an amount of measurements that increases exponentially with the number of involved modes, which practically makes the protocol intractable even with few modes. Here we introduce a new technique, based on a machine learning protocol with artificial Neural Networks, that allows to directly detect negativity of the Wigner function for multimode quantum states. We test the procedure on a whole class of numerically simulated multimode quantum states for which the Wigner function is known analytically. We demonstrate that the method is fast, accurate and more robust than conventional methods when limited amounts of data are available. Moreover the method is applied to an experimental multimode quantum state, for which an additional test of resilience to losses is carried out.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源