论文标题
异质细胞增殖的新型数学模型
A novel mathematical model of heterogeneous cell proliferation
论文作者
论文摘要
我们提出了一种新型的数学模型的异质细胞增殖模型,其中总体由缓慢增殖的细胞的亚群和快速增殖细胞的亚群组成。该模型结合了两个细胞过程:不对称的细胞分裂和诱导的增殖状态之间的切换,这是细胞群体异质性的重要决定因素。作为我们模型的动机,我们提供了实验数据,以说明诱导切换过程。我们的模型由两个耦合延迟微分方程组成的系统组成,具有分布式时间延迟和单元密度作为时间的功能。分布式延迟是有限的,并允许选择延迟内核。我们分析了模型并证明了解决方案的非负和界限,解决方案的存在和独特性以及平衡点的局部稳定特征。我们发现诱导开关的参数是分叉参数,因此确定了模型的长期行为。数值模拟说明并支持理论发现,并证明了瞬态动力学对理解许多实验细胞群体演变的主要重要性。
We present a novel mathematical model of heterogeneous cell proliferation where the total population consists of a subpopulation of slow-proliferating cells and a subpopulation of fast-proliferating cells. The model incorporates two cellular processes, asymmetric cell division and induced switching between proliferative states, which are important determinants for the heterogeneity of a cell population. As motivation for our model we provide experimental data that illustrate the induced-switching process. Our model consists of a system of two coupled delay differential equations with distributed time delays and the cell densities as functions of time. The distributed delays are bounded and allow for the choice of delay kernel. We analyse the model and prove the non-negativity and boundedness of solutions, the existence and uniqueness of solutions, and the local stability characteristics of the equilibrium points. We find that the parameters for induced switching are bifurcation parameters and therefore determine the long-term behaviour of the model. Numerical simulations illustrate and support the theoretical findings, and demonstrate the primary importance of transient dynamics for understanding the evolution of many experimental cell populations.