论文标题

在异质单细胞蛋白质组学中,基于最近的基于邻居的非参数测试,用于病毒重塑

A Nearest-Neighbor Based Nonparametric Test for Viral Remodeling in Heterogeneous Single-Cell Proteomic Data

论文作者

Banerjee, Trambak, Bhattacharya, Bhaswar B., Mukherjee, Gourab

论文摘要

基于单细胞蛋白表达数据的当代免疫学研究中的一个重要问题是确定病原体后感染后感染后是否重塑细胞表达。检测这种变化的一种自然方法是使用非参数两样本统计检验。但是,在单细胞研究中,这些测试的直接应用通常是不足的,因为来自未感染人群的单细胞水平表达数据通常包含具有高度异质特征的几种潜在亚群的属性。结果,病毒经常以不同的速率感染这些不同的亚种群,在这种情况下,传统的非参数两样本测试用于检查分布中的相似性不再保守。我们提出了一种新的非参数方法,用于在异质性(TRUH)下测试重塑,该方法可以准确地检测到受感染样品的变化,而可能是异质的未感染样品。我们的测试框架基于复合零,旨在允许零模型涵盖被感染样品虽然未经病毒的改变,但可能主要是由于基线数据中代表性不足的子人群而主要引起的。 TRUH统计量使用新型的自举算法对受感染样品的最接近邻居预测到基线未感染的人群中进行了校准。我们通过仿真实验证明了测试的非反应性能,并得出了测试统计量的较大样本限制,该测试统计量的样本极限为测试的一致渐近校准提供了理论支持。我们使用TRUH统计量在不同类型的HIV感染下研究扁桃体T细胞中的重塑,发现与传统测试不同,基于TRUH基于TRUH的统计推断符合对生物学验证的HIV感染的免疫学理论。

An important problem in contemporary immunology studies based on single-cell protein expression data is to determine whether cellular expressions are remodeled post infection by a pathogen. One natural approach for detecting such changes is to use non-parametric two-sample statistical tests. However, in single-cell studies, direct application of these tests is often inadequate because single-cell level expression data from uninfected populations often contains attributes of several latent sub-populations with highly heterogeneous characteristics. As a result, viruses often infect these different sub-populations at different rates in which case the traditional nonparametric two-sample tests for checking similarity in distributions are no longer conservative. We propose a new nonparametric method for Testing Remodeling Under Heterogeneity (TRUH) that can accurately detect changes in the infected samples compared to possibly heterogeneous uninfected samples. Our testing framework is based on composite nulls and is designed to allow the null model to encompass the possibility that the infected samples, though unaltered by the virus, might be dominantly arising from under-represented sub-populations in the baseline data. The TRUH statistic, which uses nearest neighbor projections of the infected samples into the baseline uninfected population, is calibrated using a novel bootstrap algorithm. We demonstrate the non-asymptotic performance of the test via simulation experiments and derive the large sample limit of the test statistic, which provides theoretical support towards consistent asymptotic calibration of the test. We use the TRUH statistic for studying remodeling in tonsillar T cells under different types of HIV infection and find that unlike traditional tests, TRUH based statistical inference conforms to the biologically validated immunological theories on HIV infection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源