论文标题

使用图像到图像翻译生成刺绣图案

Generating Embroidery Patterns Using Image-to-Image Translation

论文作者

Beg, Mohammad Akif, Yu, Jia Yuan

论文摘要

在计算机视觉,机器学习和计算机图形方面的许多方案中,需要学习从一个域的图像到另一个域的图像,称为图像到图像翻译的图像。例如,样式转移,对象变形,在视觉上改变了图像中天气条件的外观,将白天图像的外观更改为夜间图像,反之亦然,照片增强功能,仅举几例。在本文中,我们提出了两种机器学习技术来解决刺绣图像到图像翻译。我们的目标是生成一个看起来类似于绣花图像的预览映像,从用户使用的图像。我们的技术是对两种现有技术的修改,神经风格的转移和周期一致的生成对流网络。神经样式转移以另一个域中的另一个图像的样式从一个域中呈现图像的语义内容,而一个循环一致的生成对抗网络将映射从输入图像到没有任何配对的训练数据的输出图像,并学习损失函数以训练此映射。此外,我们提出的技术独立于任何绣花属性,例如图像的升高,灯源,开始和端点,缝合的端点,使用的针迹类型,织物类型等。给定用户图像,我们的技术可以生成一个看起来与绣花图像相似的预览图像。我们在由简单的2D图像组成的刺绣数据集上训练并测试我们的建议技术。为此,我们准备了一个未配对的绣花数据集,其中包含8000多个用户更易图像以及绣花图像。经验结果表明,这些技术成功地生成了用户图像的绣花版本的大致预览,这可以帮助用户进行决策。

In many scenarios in computer vision, machine learning, and computer graphics, there is a requirement to learn the mapping from an image of one domain to an image of another domain, called Image-to-image translation. For example, style transfer, object transfiguration, visually altering the appearance of weather conditions in an image, changing the appearance of a day image into a night image or vice versa, photo enhancement, to name a few. In this paper, we propose two machine learning techniques to solve the embroidery image-to-image translation. Our goal is to generate a preview image which looks similar to an embroidered image, from a user-uploaded image. Our techniques are modifications of two existing techniques, neural style transfer, and cycle-consistent generative-adversarial network. Neural style transfer renders the semantic content of an image from one domain in the style of a different image in another domain, whereas a cycle-consistent generative adversarial network learns the mapping from an input image to output image without any paired training data, and also learn a loss function to train this mapping. Furthermore, the techniques we propose are independent of any embroidery attributes, such as elevation of the image, light-source, start, and endpoints of a stitch, type of stitch used, fabric type, etc. Given the user image, our techniques can generate a preview image which looks similar to an embroidered image. We train and test our propose techniques on an embroidery dataset which consist of simple 2D images. To do so, we prepare an unpaired embroidery dataset with more than 8000 user-uploaded images along with embroidered images. Empirical results show that these techniques successfully generate an approximate preview of an embroidered version of a user image, which can help users in decision making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源