论文标题

近超级黑洞的统计力学

The statistical mechanics of near-extremal black holes

论文作者

Iliesiu, Luca V., Turiaci, Gustavo J.

论文摘要

黑洞热力学中的一个重要开放问题是关于固定电荷扇区内的极端黑洞和最轻的近端状态之间存在“质量差距”。在本文中,我们可靠地计算了与猜想间隙相当的温度尺度上的reissner-nordström近超级黑洞的分区函数。我们发现,固定电荷的状态密度不会显示出空白。相反,在预期的间隙能量表上,我们看到了一个国家的连续体。我们在规范和宏伟的典型合奏中计算分区功能,跟踪近距离地区的$ s^2 $通过尺寸减少出现的所有领域。我们的计算表明,低温下的相关自由度是$ 2D $ JACKIW-TEITELBOIM重力与电磁$ U(1)$ gauge场和$ SO(3)$ so(3)$ GAUGE字段产生的$ 2D $ JACKIW-TEITELBOIM重力。

An important open question in black hole thermodynamics is about the existence of a "mass gap" between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on $S^2$ in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of $2d$ Jackiw-Teitelboim gravity coupled to the electromagnetic $U(1)$ gauge field and to an $SO(3)$ gauge field generated by the dimensional reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源