论文标题

n $^3 $ lo重力自旋轨耦合在订单$ g^4 $

N$^3$LO gravitational spin-orbit coupling at order $G^4$

论文作者

Levi, Michèle, McLeod, Andrew J., von Hippel, Matthew

论文摘要

在本文中,我们首次得出了n $^3 $ lo引力自旋轨道耦合,以$ g^4 $的顺序在Newtonian后(PN)的近似值中,在有效的场理论(EFT)的引力旋转对象中。这代表了涉及三环集成的旋转扇区中的第一个计算。我们为按$ g^4 $的订单计算的全球图片中的拓扑提供了全面的说明。我们的计算利用了公共可用的\ texttt {eftofpng}代码,该代码是使用粒子幅度的循环整合技术扩展的。我们为该部门的每个Feynman图提供了结果。世界线图片中的三环图为旋转扇区的新特征带来了新功能,包括不同的术语和对数的尺寸正则化以及先验数字,所有这些都可以在此顺序以拓扑结构的最终结果中生存。该结果以4.5pn的顺序输入,以最大旋转紧凑的对象,并与此行中的先前工作一起为完成此PN精度铺平了道路。

In this paper we derive for the first time the N$^3$LO gravitational spin-orbit coupling at order $G^4$ in the post-Newtonian (PN) approximation within the effective field theory (EFT) of gravitating spinning objects. This represents the first computation in a spinning sector involving three-loop integration. We provide a comprehensive account of the topologies in the worldline picture for the computation at order $G^4$. Our computation makes use of the publicly-available \texttt{EFTofPNG} code, which is extended using loop-integration techniques from particle amplitudes. We provide the results for each of the Feynman diagrams in this sector. The three-loop graphs in the worldline picture give rise to new features in the spinning sector, including divergent terms and logarithms from dimensional regularization, as well as transcendental numbers, all of which survive in the final result of the topologies at this order. This result enters at the 4.5PN order for maximally-rotating compact objects, and together with previous work in this line, paves the way for the completion of this PN accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源