论文标题
镜子对称微粒的普遍运动在受限的Stokes流中
Universal motion of mirror-symmetric microparticles in confined Stokes flow
论文作者
论文摘要
对微流体设备中粒子运动的全面理解对于解锁新型技术的基于形状的分离和微颗粒(如微塑料,细胞和晶体多晶型物)的排序至关重要。这些颗粒与狭窄表面相互作用,从而改变了它们的轨迹。这些流体动力相互作用是形状依赖性的,可以调整以指导沿特定路径的粒子。我们通过停止流程光刻在浅的微流体通道中产生具有各种形状的强限粒子。无论其确切形状如何,具有单一镜面平面的颗粒都具有相同的运动模式:沿钟形路径的平面内旋转和横流翻译。每种模式都有一个特征时间,由粒子几何形状决定。此外,每个粒子轨迹都可以通过其各自的特征时间缩放到两个主曲线上。我们提出将这些时间尺度与粒子形状联系起来的简约关系。这些主曲线一起产生了带有单一镜面的粒子的轨迹。
Comprehensive understanding of particle motion in microfluidic devices is essential to unlock novel technologies for shape-based separation and sorting of microparticles like microplastics, cells and crystal polymorphs. Such particles interact hydrodynamically with confining surfaces, thus altering their trajectories. These hydrodynamic interactions are shape-dependent and can be tuned to guide a particle along a specific path. We produce strongly confined particles with various shapes in a shallow microfluidic channel via stop flow lithography. Regardless of their exact shape, particles with a single mirror plane have identical modes of motion: in-plane rotation and cross-stream translation along a bell-shaped path. Each mode has a characteristic time, determined by particle geometry. Furthermore, each particle trajectory can be scaled by its respective characteristic times onto two master curves. We propose minimalistic relations linking these timescales to particle shape. Together these master curves yield a trajectory universal to particles with a single mirror plane.