论文标题

UMD空间中的Carleson差异操作员

Variational Carleson operators in UMD spaces

论文作者

Amenta, Alex, Uraltsev, Gennady

论文摘要

我们证明了$ l^p $ - 结合了Carleson运算符的功能,可用于中间UMD空间。这提供了有关矢量值函数部分傅立叶积分收敛速率的定量信息。我们的证明依靠波数据包嵌入到时间频率尺寸空间$ \ mathbb {r}^3 _+$的范围,这是本文的重点。

We prove $L^p$-boundedness of variational Carleson operators for functions valued in intermediate UMD spaces. This provides quantitative information on the rate of convergence of partial Fourier integrals of vector-valued functions. Our proof relies on bounds on wave packet embeddings into outer Lebesgue spaces on the time-frequency-scale space $\mathbb{R}^3_+$, which are the focus of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源